
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO10514
TITLE: An Optimal Control Theory Based Algorithm

to Solve 2D Aerodynamic Shape Optimisation

Problems for Inviscid and Viscous Flows

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Aerodynamic Design and Optimisation of
Flight Vehicles in a Concurrent

Multi-Disciplinary Environment [la Conception et
l'optimisation aerodynamiques des vehicules
eriens dans un environnement pluridisciplinaire

et simultane]

To order the complete compilation report, use: ADA388284

The component part is provided here to allow users access to individually authored sections

f proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP010499 thru AI W3SSIFIED



18-1

An Optimal Control Theory Based Algorithm to solve 2D
Aerodynamic Shape Optimisation Problems for Inviscid and

Viscous Flows

S.Hiernaux* and J.-A. Esserst
Aerodynamics group, University of Liege

Rue Ernest Solvay 21 (Bdt C3) B-4000 Liege, Belgium

March 2, 2000

1 Introduction at very low cost; since solving the adjoint equa-
tions is equivalent to solve the state equations, the
cost of sensitivity analysis is greatly reduced. Some

With the capacity of today's computers, one can authors use adjoint equations derived from the dis-
envisage the resolution of shape optimization prob- cretized Euler equations ([5],[7]). In this paper, we
lems in aerodynamics. Nevertheless, optimization focus on adjoint equations derived from analytical
methods require many evaluations of different aero- state equations.
dynamic configurations, and so are much more ex-
pensive than a single analysis. It is therefore manda-
tory to find methods that evaluate aerodynamic
functions and their gradient at the lowest possible 2 Optimal control
computational cost, as well as fast and robust op-
timization methods.

A typical shape optimization problem can be stated
Classical optimization techniques (descent methods) as follows:
not only require the value of the function to opti-
mize, but also of its gradient. The classical way Let Q be a subspace of R2 . Find the shape offo,
to compute the gradient is to use a finite-difference a boundary of Q controlled by design variables u,
formula; the main drawback of this method is due such that the functional:
to the fact that n + 1 evaluations of aerodynamic
functions are necessary at each iteration, n being J(u) = $(s, q,, qy, u)drP (1)
the number of parameters defining the geometry f
to optimize. So, such methods are completely un- computed on a boundary Vf (where F1 and F0 can
suited to aerodynamic shape optimization, because be different) is minimized
of the high computational cost of the single analy-
sis. Alternative methods (stochastic optimization, Over the domain Q, the state variables s are gov-
genetic algorithms) that don't require gradient in-formtio areals hihly osty i ter ofc~u erned by the advective-diffusive state equations:formation are also highly costly in term of CPU

time. a, [f(s) - f.(q, q•, qy)] + ay [g(s) - g,(q, qr, qy) 0 on Q(2)

For a few years, techniques for sensitivity analysis Gi(q, qx, qy, u)= 0 on ri (3)

based on the optimal control theory have been de- where q q(s) are the primitive variables and
veloped ([1],[13]). These techniques derive from the
state equations another set of equations called "ad- qx = 0&q = Ma.s (4)
joint" or "costate" equations. The solution of these = Oq MOs (5)
adjoint equations is used to compute the gradient q(

*F.N.R.S. Research Assistant with M =2- the jacobian of the transformation
t Professor between primitive and state variables.

Paper presented at the RTO AVT Symposium on "Aerodynamic Design and Optimisation of Flight Vehicles in a
Concurrent Multi-Disciplinary Environment", held in Ottawa, Canada, 18-21 October 1999, and published in RTO MP-35.
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In order to find an optimality condition, one have The local variation due to the design variables is:
to form the Lagrangian of the problem:

+ fipT [Ox (f- f,) + Oy (g - g,)] dQ where the Hamiltonians WL are defined as:

- ri ' -f =j12+ITITGf on Ff;

+ A • (q, - MOS) + A• (q, - M89s) da * 'Hi = pTGi on the other boundaries.
(6)

where ,, pi, . , are the costate or adjoint vari- The local variation due to the state variable isusing

ables associated with the state equations, state bound- Gauss' theorem:

ary conditions and primitive-conservative realtions
respectively.

The optimal control theory states that the Lagran- L = -- { T[(A-A,)n,.-(B-B,)fy]}asdri
F

gian is stationary at the optimum solution, i.e. at
the solution, the (independant) variations of the La- - J {[ATrni + ATny] M + PTOsGi~ + sq} 6s dFi
grangian with respect to the state (s), costate (0, p) Ur

and design (u) variables is zero. + f{(A- Av)TOx¢ + (B - Bv)TO.y¢} JsdQ

The variation of the Lagrangian due to the design _ I{Oa(MT )T Oy(MTA) +AT Oas
variables is the sum of two contributions: Ax )

"• a local variation due to the variation of the +Ay s } sdQ (9)
design variables; or

"o a convective variation due to the displacementtb£° = -f T[(A-Ajn±+(B-B,)n,]}dsdfi
of the domain and boundaries. {c[ + X]i+ is

The variations of the Lagrangian due to the state, 1
and costate variables are local variations. + J {(A Av)T Oa?+(B-Bv)TOyb}SsdQ

- MTgx Ax _ MT~y Ay} Js dQ (10)

2.1 Local variations {(

where

The local variation of the lagrangian can be split in Of
eight parts: A =- B =

6£,,' £so + j£)q + 6£L o + oo + fv AZ( )

+ Z3£,O~ ~+3£+ (7) Oq

The local variation due to qx and qy are, using
As the variations of the state, costate and design Gauss' theorem:
variables are independent, the variation of their con-
tribution to the variation of the Lagrangian must
be zeroed independently.

It is easy to demonstrate that setting MOC anda£• J {Oq~j'+ > , 7 Oq Gi-- bT (Cnx + En-y) aqxdF
to zero leads to the state equations and bound-'o
ary conditions, while setting S£L' and 6£, to zero + 1 {Ax + (cTox¢ + ETOyh) } 6qx dQ (12)
leads to the primitive-conservative relations. ý2
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6Lqy f {aqy + Zp ~qyGi of a functional of the form:

J~r ý J = frf dr
_OT (Dn., + Fnj)} 6qy dr r

+ f Jy + D T,9V, +F TaY,) 6y dQ is: (1&
+j{ + ID&~+Tyk}qy~ 12,,v= (1ýf - ±+Kf) dF

where with:
C Ofv 0,0-

D =-fv F =0  -' where:8
qy Oqy

* the boundary r is described by the parameter
Equaling the integrals over Q to zero in (12) and ur: F : (x(o), y(c-));
(13) gives the relations between 0, A, and Ay:

=( iis the tangent vector: ty (dxd~y);A. = - (c0¢ ET (14)
ATa 07 is the boundary displacement due to the

Au (= _DT + Fu) (15) change of the design variables.

Equaling the integral over Q to zero in (10) and us- For a functional of the form 3= fJ f dQ, the con-
ing the two above relations gives the adjoint equa- vective variation is:
tions: )T~6 +....Y f , r

(A - A•,) 09¢ + (B - B,)T 0p¢ = rfw, dr

+MT (0J,, + ay,,) =0 (16) where wn is the projection of 0 to the normal to
the surface IF

with:
= (CT, "3I + ET8yV) Applying the formula above to the Lagrangian of

D TV)the system (6) leads to the following convective

g =---- (DTO + FT~yb) variation (where Gauss' formula is applied):

the "adjoint viscous fluxes". f/ ... + pTf) . ca + (71 + OTfn)/ drf

The adjoint boundary conditions are found by equal-Jrf
ing integrals over ri to zero in (10),(12) and (13): + [ (f _ f)T a0. + (g _ gv)T ayb] In dF

(A. - A,)n)T 0 + CT,%70 + ETu (0
nA n 9y (20)

+pTaTGi + 084 = 0 (17)

aq.4 + pTOqz Gi = (n (18) If the adjoint equations hold, the variation of the

Oqy'lý + PTOqy Gi = DTn (19) Lagrangian is formed by the convective variation

with: (20) and the local variation due to the design equa-
tions (8). Considering that c = ý6u, the optimality

A = An. + Bny A = Avnx + Bvny condition is:

Cn = Cn, + Dny En = En, + Fny 8.C = g6u (21)

= Cn,, + Eny b) = Dn, + Fny where:

If + (4, + K~"

2.2 Convective variation + t (1 + )Tfn) -+pVG .

Let us first recall that the convective variation (i.e. + [(f - f")T 0.' + (g - gv)T ol $n dFJ]

the variation due to the movement of the domain) (22)
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This equation is the design equation. The quan- * the no-slip condition: u = v = 0
tity G can be used as a gradient in an optimizationprocedure. * the isothermal condition T =To or adiabatic

condition VT ii = 0

In summary, the optimality condition has the form
of three sets of equations:

3.2 Optimization problem

"* the state equations (2) and boundary condi-
tions (3); The functional to minimize has the form:

"* the adjoint equations (16) and boundary con- ,' = j ,, )d, (24)
ditions (17,18,19);

"* the design equations (22). with p the pressure and r,, the wall shear stress.
The wall normal viscous stress r7, which is zero,
has to be introduced for compatibility reasons in

3 Application to two dimensio- the adjoint boundary conditions [10][2].

nal Navier-Stokes equations
3.3 Adjoint equations

3.1 The Navier-Stokes equations The adjoint equations are given by (16). Expanding

this equation leads to:
The 2D Navier-Stokes Equations have the form:

(f - fv) + ay(g - g") = 0 (23) AT&X +BT&YobMT + =h, (25)

where f, g are the inviscid fluxes , and the viscous with:

fluxes are given by:

* = [0, F.., Fr,, ka80 4 ]T

"* f= [0, r, r,, ur7 + vr7, - h ]T 9*v = [0, rFy, ryy, kay0 4 ]T

"* gv = [0, Txy, Tyy, UTxy + VTyy - hby]T h, = A TDX0 + B T 'y, or in extenso:

The components of the stress tensor r and the ther- hv = 0

mal flux " can be expressed in term of the first h =2 = Txx
8
x44 + TxyOy04

derivative of the primitive variables q - [p u, v, T]: h. 3 = TryC9.04 + Tyyiy0/4

hý4 = kT (704"- T)

•x 3 = 3- 2uv + -T (i•0¢42 + T-y0•x3 + Txy19y?2 + yyay'03)

" -yy = - y v -

" XY = P A(yU + 8xv) where PT, kT are the derivatives of the viscosity and

* h = -kVT conductivity with respect to the temperature. The
components of the adjoint tensor F are:

with p(T) the dynamic viscosity, and k(T) the ther- * rXX g/ (a.42 + ua44) - +
mal conductivity. 3  3

* rY = 3p (09b 3 + v&a¢4) - 2 (9.02 + u0axb4)
The far-field boundary conditions are the same as

for the Euler equations. The conditions for a wall Fy /= ((x9. 3 + ay0 2 + U9yV)4 + V"aw'4)
are:
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3.4 Adjoint boundary conditions on with:

a wall

* P. = 'r. ( -

The adjoint boundary conditions for a non-slip wall
ar computed by the equations (17,18,19). A lenghty * /p = pH04 -IF

calculation gives the following result:

" for 0: 4 Discretization and numerical

S- ¢ = I. solution
- = =-(P

- 4 = 0 (isothermal BC), or The optimality condition is composed of three equa-

kil. - rw (l - -) (adiabatic tions (stateadjoint and design). The most com-

BC). mon method, which is the one used in this work,
"is to stand on the intersection of the state and ad-

* for /t: joint surfaces, i.e. to have state and adjoint vari-

- P = -(Pob + E") ables that satisfy state and adjoint equations, and

- = 7w r ]PS to march to the design surface . This method is
the well-known descent method, commonly used in

P3 = (Pr w (I - !-)-kii-V0 4 (isother- mechanical optimization.

mal BC), or
/•3 = k 4 (adiabatic BC).

4.1 Navier-Stokes equations
where (0, V,) and (p,, [.) are the normal and
tagential to boundary components of the vector The Navier-Stokes equations (23) are discretized
(0 2 , 0 3 ) and (/1l, P2); E, and F, are the normal and by finite-volume method and solved by an implicit
tangential components of the adjoint tensor E. time marching method[9]

The adjoint boundary conditions also give a corn- Integrating the unsteady equations on a finite vol-
patibility condition on the objective function 4: ume £2i and using the Gauss theorem yields:

<D'ý = -P (26) sd (8
t j i + (F(,,n)-F,(sn))dE (28)

3.5 Design equation where F = fn, +gny and F, = fvn. , gny are re-
spectively the advective and viscous fluxes through
the boundary E of the cell.

The design equation is calculated using (22). Sev-

eral terms in V(c + 7wfn) cancel each other due Considering polygonal cells, and integrating the flux
to adjoint boundary conditions, and the gradient is using an ng-points Gauss formula, gives:
written:

G 4 OI-- , drf tJ sd~2i+ EZi.7 W, ('j - Pj) =0 (29)! 
jENi

Sfr (/ + Pen - '-w¢k) g dE1  where ij is the length of the edge j, w, the weight of
F 1  the Gauss point,and Ni is the set of edges defining

+ / PV' ". 7- i-Vb . dEf the control volume Qi. The numerical inviscid flux
Jrf are computed using the Roe flux-difference split-

+ pf I4Vu, p"Vu, . dE ting: (R 5 ~
If n ~f (27) 1 [F(sL,n) + F(sR,n) _- 1!(sL sR, n)I (S3 0 sL)

P, (30)
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where C is the Jacobian matrix evaluated using where the numerical adjoint advective flux Gij is
Roe's average of sR, sL, the latter being the value computed with a Roe-like flux splitting formula:
at the right or the left of the edges extrapolated 1 T(s,) W + R) (OR

from the center of the adjacent cells. This recon- Gii =2 [A n + - R L)] (35)
struction can be of order 0 (constant), 1 (linear) with An = An,+Bny and v an artificial dissipation
or 2 (quadratic), and may imply complex detector- factor. This dissi ation factor is mandatory for the
limiter to deal with flow discontinuities (shocks or cor. of distionuator us indtry for hslip lines), convergence of adjoint equations used in transsonic

flows problems. It will be shown that in such prob-

A centered discretization is used to discretize the lems, the discontinuous state variables imply Dirac

viscous terms of the Navier-Stokes equations. The peaks in the adjoint solution. A lot of dissipation

viscous flux is evaluated at one point located at the is then needed to avoid divergence problems.

middle edge. As for the state variables, the adjoint variables on

Once the spatial part is discretized, the equation the edges are extrapolated from the nodal values us-

is integrated in time with a fully implicit Newton- ing a constant, linear, or quadratic reconstruction.

like method. The following non-linear equation is The adjoint viscous flux F, is evaluated in a simi-
solved at each time step: lar manner as the viscous flux of the Navier-Stokesequations.

s n+1 _ Sn

YT(sfl+l's') At +(sf+l) R 0 (31) Time derivatives are added to the adjoint equa-

tions to obtain a time dependent system of equa-
If this equation is linearized, the following linear tions, which is then solved iteratively by using the
system is obtained: same method as for the Navier-Stokes equations,

I+ Js+ = -T(Sfl s') (32) i.e. fully-implicit Newton-like integration.

with J = 0•,the jacobian matrix. This system 4.3 Optimization procedure
is solved by a 1-step Newton method using a ILUO
preconditioned GMRES Algorithm[14]. The optimization procedure presented here consists

in transforming the highly non-linear shape opti-
mization problem:

4.2 Adjoint equations min f(x)

with ci(x) < 6 i for i = 1 ... n, (36)
The continuous adjoint equations (16) are discretized
with the same finite-volume method as the Euler wh tnto a nd onsintser nexplicitep y
equations: integrating (16) over a cell i gives (us- known into a sequence of simpler (explicit) prob-
ing Gauss theorem): lems. At each iteration k, a subproblem p:

min J(k) (x)

Ot + AdTj + BTa0y0 dQi with 64k)(x) <,i for i =1 ... n, (37)

d df is constructed and solved by the CONLIN proce-
'1 +,9,kd1F= li (33) dure developed at the University of Liege[6].

or, using cell averaged values and applying Gauss In this procedure, the key point consists in find-
theorem on integrals containing c90•, c9y0, ing a good modelling of the objective function and

constraints. Two different approaches were tested.n~g

at i+ >1 3lj wg(&ij+MTFVn(ij)) The first method is called "Method of Moving Asymp-
jEN, totes" (MMA)[11]. At iteration k, a function f is

A= T A l wg j (34) approximated by:

jENi f(k(X) A + qiLk) + r (38)
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The parameters r,pi and qi are adjusted such that 5 Geometry considerations

f(x(k)) = f(x(k)) 5.1 Airfoil parametrization

(k) O= i (k) The profile is defined by the formula:

In addition pi is set to zero when Oaf < 0 at x(k) y(x) = y(x) W± yt(x) (41)

and qi is set to zero when Oaf > 0, such that f is a where yt and y, are the thickness and camber dis-
monotoneous increasing (resp. decreasing) function tributions defined as follow (see figures 1(a) and
of xi: 1(b)):

p~k) = max [0 ,(U~(k) X~k)) 2 Of ]x,
LT' - I *(k) the thickness distribution is modelled by two

q(k) = mi[n 0,(Xq) -L rýk)\2 Of ]X( Bezier curves (one curve of degree 3 on the
m 1u' i •(k)J front part and one of degree 2 on the aft part);

the design variables are the position and value
of maximum thickness, the leading edge ra-

The parameters U(k) and L(k) are the asymptotes dius and the trailing edge wedge angle.

which are allowed to move from one iteration to the camber distribution is modelled by two
another, in order to narrow or broaden the feasible Bezier curves of order 2; the design variables
space are the position and value of maximum cam-

"Di- ber, and the first derivative at leading and
The second method of approximation is the trilngedes

agonal Quadratic" method [4]. At iteration k, a

function f is modelled by:
The airfoil section is then defined by eight parame-

f(k)(x) - f(x(k))+E ,bi(xi--xk))+ ( k))2 ters.

i=1

(39)
with: 5.2 Mesh movement

= Of =
Oi i ýxQi During the optimization cycle, the geometry is mod-
a2 f ified and the computational mesh must be adapted.

ai = ? A straightforward method consists in generating
0I x(k) a new mesh at each iteration, but this requires a

As the second derivatives of the function is usually fast and robust mesh generation technique. In the

not available, the term ai has to be approximated. method used here, which is called "spring analogy",

We have employed a rank-1 update procedure for the vertices of the mesh are moved, without chang-

the coefficients ai: ing the connectivity nor the number of mesh points.
The mesh is considered as a spring network that re-

(+) (C) (40) acts to a perturbation of the boundary by adjustinga~k+') =a ýk) +c 4 cst etraino h onayb dutn

a+ Z the vertex position in such a way that the deforma-

tion energy is minimal. This leads to a system of
with v = Vf(k+1) _ 'fQ"), z = .T (x(k+l) -- x(k)) non-linear equations that are solved by a Newton
and a a relaxation factor: algorithm.

a= m (i ZcP The spring analogy method is well suited for un-
= z1v1l] structured meshes for inviscid flows but needs some

modifications to be used on hybrid meshes for vis-
cous flows, because of the high aspect ratio of the
cells in the boundary layer that can produce over-

lapping or highly distorted meshes. A vertex i near
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adjoint solution The first adjoint variable obtained
at the first iteration step is shown on figure 2.

0.0ooloo2o

00 02 / "./ /

0.00/

(a) Thickness distribution 'V

0 .. .. (a) "
4o field

First adjoiint variable

o.o2

(b) Camber distribution

Figure 1: Airfoil modelisation

5 0.1 0.2 0.3 A4 0.5 0.6 0.7 0. 0. 9 I

the moving boundary (in the boundary layer) is
moved according to the formula: (b) 01 on airfoil

x7.- - x4 = a(d) (x; _ ,3o,) (42)
Figure 2: First adjoint variable

where j is the nearest point on the boundary with

respect to i, and ca(d) E [0 1] is a decreasing function This peak is smoothed by the numerical computa-
of the distance to the boundary d, and vanishes for tion which involves a numerical dissipation scheme.
d > d,... This procedure is applied to all the ver- Attempts to use a less diffusive flux (i.e. a Roe-
tices for which d < d,,,, and the remaining vertices type flux difference splitting) may lead to a failure
are updated with the spring analogy, of convergence.

This type of discontinuity is inherent to the prob-

6 Results lem, because the shock in the flow solution is not
differentiable. Such Dirac discontinuities can be
found also when using the flow sensitivity deriva-

6.1 Inviscid transsonic Lift/Drag Ra- tives to compute the gradient[8].

tio optimization The problem of minimizing the ratio Cd is not obvi-
C1

ous because the cost function cannot be written in

The test case consists in maximizing the lift to drag the form (24), although Cj and Cd have this form.
ratio at M=0.8 and an incidence of 2 degrees, with a
lower bound to the maximumthickness of the airfoil The gradient of f is
(12% of chord). In such a configuration, there is a
shock on the lee-side of the airfoil. This discontinu- Vf (VCd - fV (43)
ity in the state variable induces Dirac peaks in the C,
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One straightforward approach is to compute two 6.2 Lift maximization
adjoint problems, with functions C1 and Cd and
to put their gradients in the formula above. The The first test case is a lift coefficient maximization
method used here consists in using the functional of an airfoil in subsonic viscous flow (Mach=0.5,
f = (Cd - foC1), defined at the current design Re=100.000). The initial airfoil is a slightly cam-
point ao, for the computation of the gradient. This bered NACAO012, and an upper bound on the drag
function has the same gradient as the initial cost
function at the current de nt as the coefficient is imposed. This problem was solvedfuniorm (, tecaurrent deslignerinCt, and has the with different approximations for the objective and
form (24), because it is linear in C1 and Cd. Its thcosrit(nheexblwMAQAtadgradient only requires one adjoint computation. the constraint ( in the text below, MMA/QUA stands

for "Method of Moving asymptots for the objective

After twenty iterations, the lift to drag ratio has in- and diagonal quadratic method for the constraint",

creased from 2.03.10-2 to 10.65. The final airfoil is for example). Results are presented in table 1 and

slightly thinner than initial airfoil, with camber and 2.

a sharper trailing edge, see figure 3. The lee-side
shock has slightly increased and moved backward
(fig. 3). Method CL CD -r)

Initial 1.778. 10- 3.024.10-2 5.88
0_08 MMA/MMA 2.399. 1 0 -i 2.771. 10- 8.66

... Initial-- MMA/QUA 2.449. 10- 2.774A 10- 8.83
0.06 .. QUA/QUA 2.273.10- 2.945.10- 7.720.04 •

Table 1: Aerodynamic coefficients

A Method ACL ACD A-c
o MMA/MMA +34.9% -8.30% +47.2%MMA/QUA +37.7% -8.30% +50.1%

QUA/QUA +27.8% -2.60% +31.2%
.006

0 0.1 0.2 0.3 0,4 0.5 0,6 0.7 0.8 0.9 1
x00 C Table 2: Performance of the different

approximation techniques
(a) Shape modification

1.__ It can be noticed that the all-MMA or MMA/QUA
In-i strategies work better than the all-QUA strategy.

1 .. That can be due to two facts:

the MMA approximation is well suited for
0 s monotonically decreasing or increasing func-

tions (and that can be the case for CL);

-, *the QUA method relies on the quasi-Newton

approximation of the Hessian matrix, which
-1. 01 02 .3 0 0. . 0 . 0. can be quite inaccurate, especially during the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.0 1
6/c first iterations.

(b) Gp comparison
Figure 4 shows the initial and optimized shapes for
MMA/QUA and QUA/QUA computations (MMA/MMA

Figure 3: Shape and Cp comparison gives almost the same airfoil as MMA/QUA).

Figure 5 shows the Mach field around the optimized
airfoil (MMA/QUA).

The optimized airfoil is cambered (1.1%) to increase
lift, with the position ofmaximumcamber displaced
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0.08 ,0.02
Initial Initial

+± ++++-+ + + + M QA-- MMAQUA ----

0.04if• 0.005

-0.02 0.005-0.00

00 0 -------

-0.0200.0-0.04 -• - 0.01

-0.06 .0.015 q
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: Initial and optimized shapes Figure 6: Skin friction coefficient on initial and op-
timized airfoils

In the present test case, the pressure of an air-
foil (Mach=0.5, Re-!00.000) has to be matched
to the pressure field of an RAE2822 airfoil in the
same flow conditions. The initial airfoil is the same
NACA0012 as in the previous test case. The opti-

___ mization technique used is MMA.

As can be seen on figure 7, the final solution is very
close to the target, in term of shape and pressure
distribution.

The residual history gives valuables observations of
the behaviour of the MMA algorithm: the initial
oscillations of the objective functions, due to oscil-
lations of the variable describing camber, are pro-

Figure 5: Mach field around optimized airfoil (Mach gressively damped by bringing the moving asymp-
max.=0.89253) tots closer to each other. However this leads to a

non-optimal solution; this difficulty was overcome
by restarting the algorithm after iteration 13 (seetoward aft (at 75% of chord), in such a way that the fgr )

recirculation bubble is smaller (see figure 6), thus

leading to a decrease in the viscous drag coefficient. In the previous calculation, the upper and lower

bound on the design variables are chosen such that
the optimal solution lies on the boundary of the de-
sign space. In such a case, the MMA approxiamtion

6.3 Inverse design is very efficient, because the objective function is
generally a monotonous function. When the solu-

Inverse design problems can be treated as optimiza- tion is inside the design space, MMA fails to findtion problems, the function to optimize being the the real optimum because it cannot model functions

least square distance between a target pressure field with one (or more ) extremum. Figure 9 shows
and the actual pressure. Although optimization the result of the same test case, with a larger de-

techniques are much more expensive in term of cal- sign space: the computed solution lies on the design
culation time, they always succeed in finding an space boundary and is not the real optimum.
optimum value where inverse design techniques can
fail. Inverse design problems are also useful when
testing algorithms, because the optimal solution is
known.
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imation of the Hessian matrices could be found.
Initial - Further studies on Hessian matrices[3] could thus

Optimized e be valuable.
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